Effect of TiO₂ Support on the Composition, Morphology and Catalytic Property of the NiB Amorphous Alloy Catalyst

Lai Jun WANG, Ming Hui ZHANG, Wei LI, Ke Yi TAO*

College of Chemistry, Nankai University, Tianjin 300071

Abstract: Both the unsupported and supported NiB amorphous alloy catalysts (NiB and NiB/TiO₂) were prepared by the chemical reduction method. Their catalytic activities were tested by the hydrogenation of sulfolene. The interactions between the NiB alloy and TiO_2 were discussed for the first time by using XRD, ICP, SEM and TEM.

Keywords: NiB/TiO₂ amorphous catalyst, hydrogenation, sulfolene, interaction.

Amorphous alloy catalysts have attracted great attention in recent years because of their superior catalytic properties in hydrogenation ¹⁻⁵. Our previous studies revealed that the unsupported NiB alloys showed high activity during the hydrogenation of sulfolene to sulfolane³. However, their preparation conditions (at 268K, with N₂ protection) were very rigid, which limited their industrial application. In comparison with the unsupported NiB catalysts, supported NiB catalysts are promising in industrial applications because of their larger surface area, higher thermal stability, superior catalytic activities and lower cost. Furthermore, we had verified that the NiB/TiO₂ was an excellent catalyst in hydrogenation⁴. In the present work, we deposited the ultrafine NiB particles on TiO₂ by the impregnation-wetness-reduction method and chemical deposition method at 293K without N₂ protection. The unsupported NiB alloy was prepared by the chemical reduction method at the same condition. Their differences in the alloy composition, distribution, morphology and catalytic activity in the hydrogenation of sulfolene were identified and discussed.

Experimental

Catalyst Preparation

The NiB amorphous alloy catalyst was prepared by the chemical reduction method³. An aqueous solution of KBH₄ (2.0 mol/L) was added dropwise to the 0.1 mol/L NiSO₄·6H₂O aqueous solution. The molar ratio of B/Ni was 2:1 and the temperature was 293 K. NiB/TiO₂-1 was prepared by impregnation-wetness-reduction method⁴. NiB/TiO₂-2

^{*} E-mail: kytao@nankai.edu.cn

Lai Jun WANG et al.

was prepared by the chemical deposition method. The mixture containing TiO_2 (5.0 g) and 0.1 mol/L NiSO₄·6H₂O solution was stirred vigorously for 4 h and then reduced by dropwise adding 2.0 mol/L KBH₄. All the preparation parameters including the molar ratio of B/Ni, temperature, adding rate, reaction time and the washing procedure were the same as the preparation of the NiB. The theoretical loading of Ni on TiO_2 was 10.0wt%.

Catalyst characterization

The XRD patterns were recorded on a D/MAX-2500 X-ray diffractometer with CuK α radiation. The nickel and boron contents were measured by ICP-AES (TJA ICP-9000 (N+M)). The surface morphology and the particle size were observed by both scanning electron microscopy (SEM Hitachi S-3500N) and transmission electron microscopy (TEM, Philips EM400ST).

Activity test

The hydrogenation of sulfolene was carried out in a stainless steel autoclave containing 60.0 mL distilled water, 30.0 g sulfolene and 1.0 g catalyst at 3.0 MPa of H_2 pressure and 328 K with vigorous stirring (600 rpm). The reaction lasted for 2.0 h. The products were analyzed by using a gas chromatograph equipped with FID, from which the yield of sulfolane was obtained.

Results and Discussion

The XRD pattern of NiB alloy was typical of an amorphous substance with complete absence of any sharp crystalline peaks². The broad peak around 2θ =45° in the pattern of NiB was due to the amorphous NiB alloy and the small profile around 2θ =22° was ascribed to the amorphous boron oxide, which was thought in the literature to be inevitably formed when the reduction was carried out in aqueous solution⁵. There was no significant difference between the XRD patterns of TiO₂ and that of NiB/TiO₂ because of the high dispersion of NiB on TiO₂ and the low loading of Ni, which was consistent with the results in the literature⁴. Selected area electronic diffraction (SAED) was also employed to verify the amorphous structure of NiB. There was a halo diffraction pattern rather than distinct dots in the SAED image of NiB (**Figure 1a**), in good agreement with the XRD result.

The bulk compositions of the catalysts were given in **Table 1**. Because both NiB and NiB/TiO₂-2 were prepared under the same conditions, their composition should be identical in theory. As shown in **Table 1**, no significant change in the composition of the NiB alloy was observed. It was also found that Ni loadings on NiB/TiO₂-1 and NiB/TiO₂-2 were different. The Ni loading on NiB/TiO₂-2 was identical with the theoretical value because there was no loss of the Ni during the preparation. But the Ni loading on NiB/TiO₂-1 was much lower than the theoretical value. The preparation procedures of NiB/TiO₂-1 were more complicated than that of NiB/TiO₂-2 and the loss of the nickel could not be avoided.

TiO₂ Support on the Composition, Morphology and Catalytic Property 1359

Table 1 The composition of NiB and NiB/ TiO₂ catalysts and their catalytic activities

Sample	Ni (wt.%)	Composition (wt.%)	Yield of sulfolane (%)
NiB	83.84	Ni _{90.8} B _{9.2}	70.3
NiB/TiO ₂ -1	6.10	Ni _{86.4} B _{13.7}	74.7
NiB/TiO ₂ -2	9.94	Ni _{90.3} B _{9.7}	65.9

Figure 1 SAED of (a) NiB and TEM of (b) NiB; (c) NiB/TiO₂-1; (d) NiB/TiO₂-2

TEM results showed that the unsupported NiB particles (**Figure 1b**) were spherical with the average particle size around 20 nm and appeared to be interconnected, which is the character of the nanoparticles. The NiB particles on NiB/TiO₂-1 (**Figure 1c**) were spherical with the average particle size about 10nm and the size distribution of them was

Lai Jun WANG et al.

very homogeneous. There were two kinds of NiB particles on NiB/TiO₂-2 (**Figure 1d**). Those particles in the free state were present in spherical shape with diameters ranging from 10 to 20 nm. Some NiB particles on NiB/TiO₂-2 were attached to the surface of the support and present in spherical shape with the average size around 10 nm. These two states of NiB particles on NiB/TiO₂-2 were ascribed to the preparation method of the chemical deposition, because not all the NiB particles prepared by the reduction of Ni²⁺ with KBH₄ would deposit on TiO₂. It was obvious that the gathering of the ultrafine NiB particles could be successfully inhibited owing to the introduction of the TiO₂ support. The differences in the morphology between the unsupported NiB and the supported NiB particles verified the promoting effect of the TiO₂ support on the dispersion of NiB alloy.

Both NiB and NiB/TiO₂ had very high hydrogenation activity under the reaction conditions used in the literature (Water/sulfolene = $10.0 \text{ mL}/10.0 \text{ g})^3$. The yield of the sulfolane of each sample was over 99%. In order to distinguish their activities, the hydrogenation of sulfolene was performed at rigid condition (Water/sulfolene = 60.0 mL/30.0 g). The results (**Table 1**) showed that although the Ni loading on NiB/TiO₂-1 was much lower than that on NiB and NiB/TiO₂-2, the hydrogenation activity of NiB/TiO₂-1 was higher than NiB and NiB/TiO₂-2. The specific activities of Ni on both NiB/TiO₂-1 and NiB/TiO₂-2 were higher than the unsupported NiB. These results were ascribed to the dispersion and size of NiB particles on the support. As compared to that of NiB/TiO₂-1, the larger size and the lower dispersion of NiB particles on the NiB/TiO₂-2 would neutralize the increase of activity caused by the increase of the Ni loading. The above results showed that the activity of the supported NiB amorphous catalyst could be superior to the activity of the unsupported NiB amorphous catalyst under a low consumption of the nickel.

Acknowledgments

The authors are grateful to the NNSFC and NSFTJ for the financial support (20003006 and 031606211).

References

- 1. E. Z. Min, Ch. Y. Li, *Base of Science and Engineering of Green Petrochemical Technology*, China Petrochem Press, Beijing, **2002**, 250~274.
- 2. H. X. Li, W. J. Wang, H. Li, J. F. Deng, J. Catal., 2000, 194, 211.
- 3. Y. F. Ma, W. Li, M. H. Zhang, Y. Zhou, K. Y. Tao, Appl. Catal. A, 2003, 243, 215.
- 4. Q. Y. Cheng, W. Li, Y. Zhou, et al., Chin. Chem. Lett., 2001, 12, 1123.
- 5. Y. Chen, Catal. Today, 1998, 44, 3.

Received 29 September, 2003